Segmentation of Magnetic Resonance Microimages of Trabecular Bone: Classifiers and Markov Random Field Model

نویسندگان

  • I. Strolka
  • A. Accardo
  • D. Dreossi
  • F. Vittur
  • R. Toffanin
  • I. Frollo
چکیده

Quantitative assessment of trabecular bone structure based on magnetic resonance microimages requires a segmentation step, which is difficult to perform because of low signal-to-noise ratio and spatial signal inhomogeneities in these images. In this paper, we present the design of voxel classifiers based on statistical mixture models and classifiers using the feed-forward artificial neural networks (ANN). In both cases a Markov random field (MRF) prior model is used to enhance the reliability of the segmentation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Enhanced Spatial Priors for Segmentation of Magnetic Resonance Imagery

A framework for probabilistic segmentation of Magnetic Resonance (MR) images is proposed which utilizes three types of models: intensity models to capture the graylevel appearance of a structure, relative-spatial models which describe the spatial relationships between structures in a subject-specific reference frame, and shape models to describe the shape of structures in a subjectindependent r...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised MRI segmentation with spatial connectivity

Magnetic Resonance Imaging (MRI) offers a wealth of information for medical examination. Fast, accurate and reproducible segmentation of MRI is desirable in many applications. We have developed a new unsupervised MRI segmentation method based on k-means and fuzzy c-means (FCM) algorithms, which uses spatial constraints. Spatial constraints are included by the use of a Markov Random Field model....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003